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Abstract. Westudy the S = 1 antiferromagneticHeisenbergchain with uniaxial anisotropy, 
which exhibits the Haldane gap phenomenon. We argue that, when a magnetic field in a 
direction transverse to the anisotropy axis is applied, a sharp phase transition takes place at 
a critical value of the field. The  transition is characterized by vanishing of the hidden 
antiferromagnetic order which can be measured by the string order parameter of den Nijs 
and Rommelse. The existence of such a transition distinguishes a Haldane gap system from 
other disordered quantum spin systems. 

1. Introduction 

Haldane [l] argued that the Heisenberg antiferromagnetic chain with an integer spin 
has a unique disordered ground state with a finite excitation gap, while the same model 
with a half-odd-integer spin has no excitation gap. The conclusion for the integer spin 
models was rather surprising since it  was against common sense that a quantum system 
with a rotation-invariant ground state has no gap in the infinite volume limit. However, 
numerous experimental, numerical and theoretical studies have confirmed Haldane’s 
prediction [2]. 

Recent theoretical investigations have also revealed highly non-trivial structures 
underlying the mechanism of the gap generation in the integer spin models. den Nijs 
and Rommelse [3] and Tasaki [4] argued that the existence of a hidden antiferromagnetic 
orderisacommonandessentialfeatureintheHaldanegapsystems. Kennedy[5]showed 
numerically that the ground states of a Haldane gap antiferromagnet in a finite open 
chain are nearly fourfold degenerate even though the ground state is unique in the 
infinite-volume limit. These structures bad already been observed in the exact ground 
state of an S = 1 biquadratic Hamiltonian obtained in [6] which was shown to possess 
almost all the properties that Haldane predicted. Recently Kennedy and Tasaki [7] 
introduced a non-local unitary transformation and showed that these features of the 
Haldane gap system can be regarded as consequences of the breaking of a Zz x 2, 
symmetry in the transformed system. 

Of course, the Haldane mechanism is not the only way to get a gap in the spectrum 
of a quantum spin system. Consider, for example, an S = 1 system whose Hamiltonian 
is dominated by the crystal-field anisotropy term & D ( S : ) z  with positive D. It is 
intuitively clear (and can be proved rigorously [4,8]) that the ground state is essentially 
the product of the states with Sf = 0 and there is a gap approximately equal to D. 
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Although the disordered nature of thisgroundstate resembles the Haldane-type ground 
state, it lacks the hidden antiferromagnetic order [8 ] .  We must realize that the nature of 
the gap in this case is distinct from the Haldane gap. 

Thus it is desirable to have definite criteria that enable us to distinguish between the 
disordered ground states generated by the subtle (and interesting) Haldane mechanism 
and trivial mechanisms such as the above large-D mechanism. From a theoretical 
(and a numerical experimental) point of view, the direct measurement of the hidden 
antiferromagnetic order or the Z2 X Z2 symmetry breaking would be among the best 
criteria, but the hidden order can never be observed directly by experiment. Hagiwara 
e ta l [9]  reported an experimental observation of the fourfold near-degeneracy. 

In the presentpaper, weconsider theS = 1 Heisenbergantiferromagneticchainwith 
a crystal-field anisotropy. We study the behaviour of the magnetization when a magnetic 
field transverse to the anisotropy axis is applied. We argue that the behaviour of the 
magnetization curve provides a sharp criterion for distinguishing a Haldane gap system, 
Our conclusion is that the magnetization curve shows a singularity at a critical value of 
the field if the gap is due to the Haldane mechanism, while the curve is analytic if the 
gap is due to the trivial large-D mechanism. Note that, when a magnetic field is applied 
in the same direction as the anisotropy, the magnetization shows a singularity in both 
the cases. The measurements [lo] of the high-field magnetization process of NENP are 
consistent with our conclusion and give a strong indication that the gap observed in NENP 
is indeed a Haldane gap. 

Affleck [ l l ]  obtained conclusions similar to ours. See [ l l ,  121 for theoretical work 
on the other aspects of the field effect in the Haldane gap antiferromagnets. 

2. The model 

We consider an S = 1 chain with the Hamiltonian 

X = 2 JS, -S ,+ ,  + D[( Sf)’ - 11 - HS: 

where we assume that D > 0 for the crystal-field anisotropy parameter. Note that we 
have used (for a technical reason) a non-standard convention where the x axis is the 
anisotropy axis, and the uniform transverse field is applied in the z direction. 

We are interested in the H-dependence (for a fixed value of D) of the magnetization 
in the direction of the field: 

where L is the number of the sites, and ( ,  . .) denotes the ground-state expectation 
value. 

When D is sufficiently large, the exchange interaction (the J-term) can be regarded 
as a perturbation. The ground state is essentially that of the single-spin Hamiltonian 
obtained by setting J = 0 in (1). Thust the magnetization (2) is an analytic function of 
N. We expect that the analyticity holds in the whole large-Dphase whichischaracterized 
by vanishing hidden antiferromagnetic order. 

t It is possible to prove this rigorously by developing a convergent cluster expansion. See [SI for examples of 
such expansions. 
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When D is sufficiently small, it is believed that the ground state for H = 0 has a non- 
vanishing den Nijs Rommelse [3] string order parameter 

In the next section, weshow that thestringorder parametershould remainnon-vanishing 
when a sufficiently small magnetic field H is added. On the other hand, it is not hard to 
prove that the string order parameter (3) is vanishing when His  sufficiently large. Then 
we should have a sharp phase transition from the phase with non-vanishing O& to the 
phase with vanishing O&, when D is fixed to a sufficiently small value and H is 
increased. Since the hidden antiferromagnetic order is incompatible with the uniform 
magnetization, we expect a small (but finite) susceptibility in the region with O& # 
0. When the magnetic field exceeds its critical value, we expect a sudden jump in the 
susceptibility. Our geometric picture also suggests that the transition resembles that in 
the antiferromagnetic king model at a fixed temperature under varying uniform mag- 
netic field. 

Affleck [ll] studied a phenomenological field theory with built-in mass gap and 
obtained similar conclusions about the natureof the phase transition, but no information 
about the string order parameter. For a numerical experimentalist, it would be an 
interesting problem to make a direct measurement of the string order parameter in the 
present situation. 

3. Geometric picture 

In the present section, we show that the ground state of (1) with sufficiently small D and 
H has non-vanishing hidden antiferromagnetic order. Our argument is based on the 
standard path integral technique which represents a quantum spin system as a classical 
statistical mechanical system. By using the Lie-Trotter-Suzuki product formula [13], 
the ground-state expectation value of a local observable A can be expressed as 

where the 'time evolution operator' T = TxyTz is defined by 

We insert a complete system into the product as 

Tr(T'@) = c (uoITIoi)(~iITIod.. . (o ,~-~ITloo)  (6) 
~o,"}m=o. l , . , ,  ."$?-I 

omJi with where 1 om) = = * 1,0 is summed over all the basis states. ( 1  If: I ) i  and 
10)idenotesthenormalizedeigenstateofS: with theeigenvalues +1 and0, respectively.) 
The right-hand-side of (6) can be regarded as a classical spin system defined on a two- 
dimensional 'space-time' lattice where the chain site i denotes the space coordinate and 
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Figure 1. A t)picai loop configuration a1 the He!- 
senbergpointD = H = 0 Thereisastronghidden 
antiferromagnetic order 

M the time coordinate. To get a geometric representation of (6). we expand each Txy 
and represent (6)  as a (huge) summation. Next we draw a vertical bond of the unit 
length through a space-time point (m. i) if um,; # 0, and a horizontal bond (m + 4, i)- 
(m + i , i  + l)wheneveronepicksupthetermsS:S;+, orS;S:+, inthematrixelement 
( U ~ ~ T ~ ~ [ U ~ + ~ ) .  Then we can rewrite (6) asTr(T"6) = Er W(T) where rissummedover 
allthegraphsconsistingof theverticalandhorizontalbonds[4,8]. Itisnot hardtocheck 
that the statistical weight W ( T )  is non-negativet. Moreover the weight is non-vanishing 
only when F can be regarded as a collection of closed loops. These properties are 
extremely useful for our purpose. In particular, they enable us to rewrite the quantum 
mechanical system as a statistical mechanical system of random loops where the prob- 
ability that a loop configuration r appears is given by W(T),%, W(r).  

The argument of den Nijs and Rommelse [3]. a numerical calculation of Girvin and 
Arovas [I41 and a geometric picture (together with a rigorous 'no gas theorem') in (41 
suggest that, at the Heisenberg point D = H = 0. the random loop system is in the 
'percolating phase'. Then the existence of an infinitely large loop inevitably implies that 
there is a strong antiferromagnetic order in the following sense. Take a space-like slice 
of a typical random loop configuration to get a string of +, - and 0. Next drop all the Os 
from the string, to get a string of + and -. Then one should observe a (normal) long- 
range antiferromagnetic order in this string (figure 1). The existence of such a hidden 
order cannot be observed as ordinary long-range order but can ~~~ be ~ detected by the non- 
vanishing den Nijs-Rommelse string order parameter (3). 

Next we consider the effect of positive crystal-field anisotropy D and magnetic field 
H .  In the basis where each Sf is diagonal, the D-term flips spin as + t* -.Thus it creates 
intervals of flipped spins on the loops. The H-term contributes from the exponential 
weight in (6) and increases the probability of having + spins. A crucial fact is that the 
existence of the hidden antiferromagnetic order is incompatible with the 'all + state' 
favouredby the uniformmagnetic field. Thesituationiscloselyanalogousto theclassical 

t The weight W(T) is a product of -31% for each horizontal bond, -Did" for each point where there is a 
spin nip between + 1  and -1 ,  and a positive factor that comes from T,, Since each loop must conlain even 
numbers of horizontal bonds and spin flips, we have the non-negativity. (We are assuming that np is even.) 
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FigurcZ. A typicalloopconfiguration when Dand 
H are finite (but small). There are intervals of 
flipped spins (indicated by grey lines). but the 
hidden antiferromagnetic order still remains. 

ZD antiferromagnetic king model under a uniform magnetic field, where it is known 
rigorously that the long-range antiferromagnetic order survives a sufficiently small 
magnetic field if the temperature is sufficiently low. In the Haldane gap antiferro- 
magnets, D plays the role of the temperature in the Ising model. We expect that, when 
D is sufficiently small, the hidden order remains finite for sufficiently small values of H ,  
and it vanishes above a critical value of H (figure 2). The behaviour of the magnetization 
curve is expected to be similar to that in the antiferromagnetic king model. The sus- 
ceptibility should be small (but finite) for the values of the field lower than its critical 
value, and weexpect asudden jumpin thesusceptibility when thefieldexceedsitscritical 
value. We stress that the magnetization curve is determined by a subtle cooperative 
phenomenon. 

To make the above discussion more convincing, we evaluate the appearance prob- 
ability of a flipped interval and the expected sizes of the flipped intervals. In these 
estimates, we let D and H be much smaller than the Haldane gap, and assume that there 
is a strong hidden antiferromagnetic order. The estimates show that flipped intervals are 
indeed rare, and thus the assumption of the strong hidden order is valid. This provides 
a (non-rigorous) self-consistency argument which supports our conclusion. 

Suppose that a fixed space-time point is contained in such an interval of flipped spins 
whose length in the temporal direction is L .  From (5) we see that the statistical weight 
associated with the interval is (D2/4nz)  exp[(-2A/n i 2H/n)L]  when the spins inside 
the interval are ?l, respectively. We have assumed that the spins surrounding the 
interval have perfect antiferromagnetic order, and the interaction between the spins is 
effectively reduced (from J) to A, the magnitude of the Haldane gap. 

Let 
D 2  

2(A F H )  z - - Z L  
4nZ n 5 -  

and 

Dt 
= 16(A 3 H ) 3  

(7) 

Then the probability that a fixed space-time point is contained in a flipped interval can 
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be estimated as PL = Z,(1 + ZJ' .  This probability is approximately (D/4A): when 
H < A and is thus very small when D < A. The expectation value of the length (in the 
temporal direction measured in the physical unit) of the flipped interval of spins t-1 is 
approximately (L, /n)  = Z,/Y,  = (A 7 H)- I ,  which is finite when H 

The above calculations also give an order-of-magnitude estimate of M ( H ) .  We can 
write M ( H )  = u(P+ - P-)/Z where U is the 'density' of the random loopst. Therefore 
we get M ( H )  = (oD/8A3)Hwhen D, H 4 A. This behaviour is in contrast with that in 
the region D 9 A, where we have M ( H )  = D-'H. 

A ,  

Acknowledgments 

It is a pleasure to thank T Kennedy, T Koma, H Mano, I Affleck, M Takahashi and T 
Sakai fordiscussionson related topics. The present work wassupported in part by Grant- 
in-aid for EncouragementofYoung Scientistsfrom the Japanese MinistryofEducation, 
Science and Culture. 

References 

[ 11 Haldane F D M 1983a Phys. Leu. 93A 464: 1983b Phys. Re". Len. M 1153 
121 Affleck I1989J. Phys.: Condem. Malrer 13047 
[3]  den Nijs M and Rommelsc K 1989 Phys. Reu. B 404709 
[4] Tasaki H 1991 Pkys. Rev. Leu 66 798 
[SI Kennedy T 1990 I .  Phys.: Condem. Marrer 2 5737 
[h] Affleck 1, Kennedy T, Lieb E H  andTasaki H 1987 Phys. Reo. Len. 59 799; 1988 Commun. Math. Phys. 

115 477 
Kennedy T, Lieb E H and Tasaki H 1988 I .  SlaL Phys. 53 383 

[7] Kcnnedy T and Tdsaki H 1991 Hidden 22 X 2, symmetry breaking in Haldane gap antiferromagnets 
Preprinr (University of Arizona) 

181 KennedyTandTasakiH 1991 unpublished 
191 Hagiwara M, Katsumdta K, Affleck I ,  Hdlperin B I and Renard J P 1990 Phys. Reu. Leu. 65 3181 

[IO]  Katsumata K. Hori H,Takeuchi T. Date M. Yamagishi A and Renard J P 1989 Phys. Rev. Len. 6386 

I l l ]  Affleck 1 I991 Phys. Reu. Bat  press 
[12] Affleck I 1990 Phys. Reu. B 41 6697 

Ajiro Y, Goto T. Kikuchi H, Sakakibara T and lnami T 1989 Phys. Reo. Len. 63 1424 

Takahashi M and Sakai T 1991 J .  Phys. Soc. Japan at press 
Nomura K and Sakai T 1991 Preprinl (ISSP,Tokyo) 
Sakai T and Takahashi M 1991 Preprinl (ISSP. Tokyo) 

Robinson D 1969 Commm. Math. Phys. 14 I95 
Ginibre J 1969 Cornmun. Math. Phys. 14~205 
Asano T 1970a 3. Phys. Soc. Japan 29 350; 1970b Phys. Re". Lett 24 1409 
Suruki M and Fisher M E 1971 3. Math. Phys. 12235 
For recent applications, see Suzuki M 1986 3. Stor. Phys. 43 883 and re.feren%s therein 

1141 Girvin S M and Arovas D P 1989 Phys. Scr. T 27 156 

1131 The use of the product formula in quantum spin systems can be traced back to the following references 

t A rough estimate of acan be obtained by noting that a2 is approximately equal to the expectation value of 
the string order parameter (3). From the numerical estimate of Girvin and Arovas [14] we see that (I = 0.6. 


